Reasoning and Problem Solving Step 9: Comparing Numbers

National Curriculum Objectives:

Mathematics Year 3: (3N2a) Compare and order numbers up to 1000

Mathematics Year 3: (3N2a) Read and write numbers up to 1000 in numerals and in words

Mathematics Year 3: (3N3) Recognise the place value of each digit in a three-digit number

(hundreds, tens, ones)

Mathematics Year 3: (3N4) Identify, represent and estimate numbers using different representations

Differentiation:

Questions 1, 4 and 7 (Problem Solving)

Developing Find numbers up to 1,000, that could complete a statement using inequality symbols. Numerals and conventional partitioning only.

Expected Find numbers up to 1,000, that could complete a statement using inequality symbols. Numerals and words using conventional partitioning.

Greater Depth Find numbers up to 1,000, that could complete a statement using inequality symbols. Numerals and words with some instances of multiple examples of unconventional partitioning within a number. For example, 18 tens and 12 ones.

Questions 2, 5 and 8 (Reasoning)

Developing Compare two numbers up to 1,000 explaining the greatest using comparative language. Numerals and conventional partitioning only.

Expected Compare two numbers up to 1,000 explaining the greatest using comparative language. Numerals and words using conventional partitioning.

Greater Depth Compare two numbers up to 1,000 explaining the greatest using comparative language. Numerals and words with some instances of multiple examples of unconventional partitioning within a number. For example, 18 tens and 12 ones.

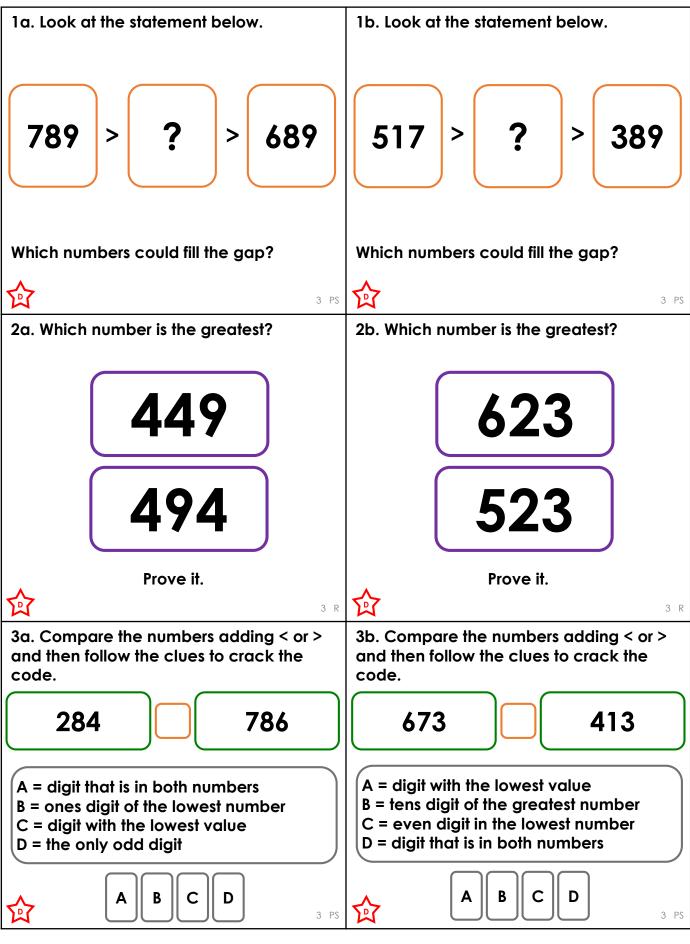
Questions 3, 6 and 9 (Problem Solving)

Developing Compare two numbers up to 1,000 using inequality symbols and follow clues to find a code. Numerals and conventional partitioning only.

Expected Compare two numbers up to 1,000 using inequality symbols and follow clues to find the code. Numerals and words using conventional partitioning and some instances of unconventional partitioning within a number. For example, 13 tens.

Greater Depth Compare two numbers up to 1,000 using inequality symbols and follow clues to find a code. Numerals and words with some instances of multiple examples of unconventional partitioning within a number. For example, 18 tens and 12 ones.

More Year 2 and Year 3 Place Value resources


Did you like this resource? Don't forget to <u>review</u> it on our website.

classroomsecrets.co.uk

Comparing Numbers

Comparing Numbers

Comparing Numbers

Comparing Numbers

4a. Look at the statement below.

4b. Look at the statement below.

four hundred and eightyseven

Which numbers could fill the gap?

Which numbers could fill the gap?

3 PS \[\int \]

5b. Which number is the greatest?

5a. Which number is the greatest?

300 + 70 + 4

three hundred and forty-seven

Prove it.

seven hundred and thirty-two

700 + 20 + 3

Prove it.

3 R

6a. Compare the numbers adding < or > and then follow the clues to crack the code.

4 hundreds and 53 ones

five hundred and thirteen

6b. Compare the numbers adding < or > and then follow the clues to crack the code.

five hundred and ninety-two

6 hundreds and 21 ones

A = hundreds digit of the lowest number

B = ones digit of the lowest number

C = tens digit of the greatest number

D = the only even digit

D

A = tens digit of the greatest number

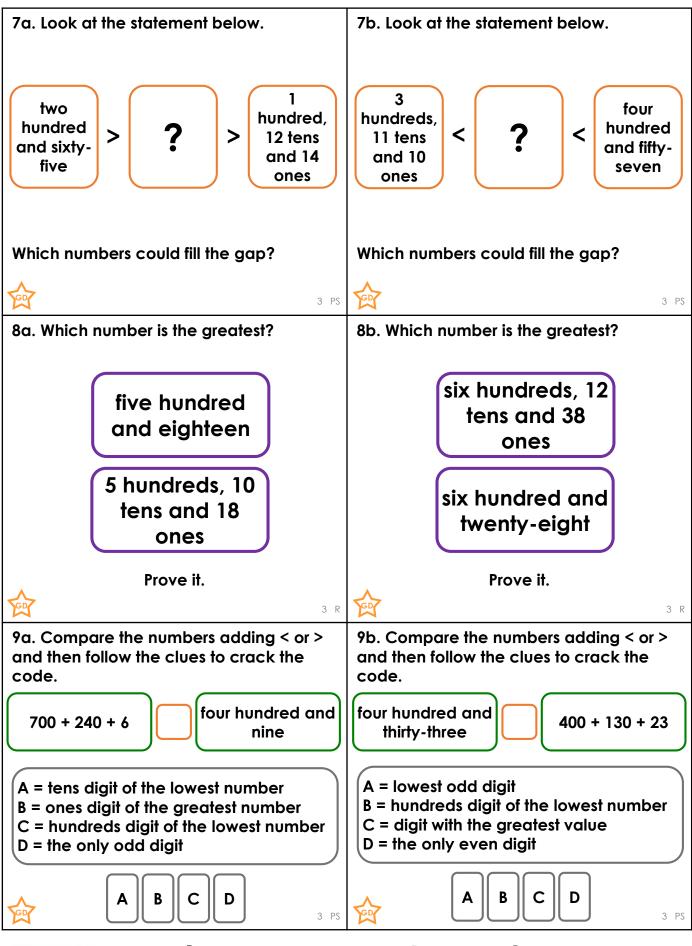
B = ones digit of the lowest number

C = hundreds digit of the lowest number

D = the lowest odd digit

企

 $A \parallel B \parallel C \parallel D$


3 PS

3 R

3 PS

Comparing Numbers

Comparing Numbers

classroomsecrets.co.uk

Reasoning and Problem Solving Comparing Numbers

Reasoning and Problem Solving Comparing Numbers

Developing

1a. Any number between and including 788 and 690.

2a. 494 is the greatest. Both numbers have an equal value in the hundreds column but 494 has a greater value in the tens column.

3a. <; Code is 8 4 2 7

Expected

4a. Any number between and including 343 and 486.

5a. 374 is the greatest. Both numbers have an equal value in the hundreds column but 374 has a greater value in the tens column.

6a. <: Code is 4 3 1 4

Greater Depth

7a. Any number between and including 235 and 264.

8a. 528 is the greatest. Both numbers have an equal value in the ones and the tens column but 618 has a greater value in the hundreds column.

9a. >; Code is 0 6 4 9

<u>Developing</u>

1b. Any number between and including 390 and 516.

2b. 623 is the greatest. Both numbers have an equal value in the tens and ones column but 623 has a greater value in the hundreds column.

3b. >; Code is 1 7 4 3

Expected

4b. Any number between and including 150 and 256.

5b. 640 is the greatest. Both numbers have an equal value in the hundreds column but 640 has a greater value in the tens column.

6b. <; Code is 2 2 5 1

<u>Greater Depth</u>

7b. Any number between and including 421 and 456.

8b. 758 is the greatest. Both numbers have an equal value in the ones column but 758 has a greater value of tens and hundreds.

9b. <: Code is 3 4 5 4

